If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+(3x)^2=490
We move all terms to the left:
x^2+(3x)^2-(490)=0
We add all the numbers together, and all the variables
4x^2-490=0
a = 4; b = 0; c = -490;
Δ = b2-4ac
Δ = 02-4·4·(-490)
Δ = 7840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7840}=\sqrt{784*10}=\sqrt{784}*\sqrt{10}=28\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{10}}{2*4}=\frac{0-28\sqrt{10}}{8} =-\frac{28\sqrt{10}}{8} =-\frac{7\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{10}}{2*4}=\frac{0+28\sqrt{10}}{8} =\frac{28\sqrt{10}}{8} =\frac{7\sqrt{10}}{2} $
| 5,5-3,5x=13,25x+72,5 | | 5t+4.9t^2-800=0 | | 10-3x+37=27 | | 16x-28=6-x | | 16x-28=6-x | | 1-x+37=36 | | 6/5x−3/2=7/10(x−3/4) | | 82x+10=10-82x | | 2-2x+37=35 | | 22x+3=22x-3 | | 8x+2x-8=6 | | 23=2e+5 | | -9x+14=12x | | -5(y-1)=-7y+3 | | 3/7c=9 | | 2-1x+37=35 | | 5y-25=2(y-8) | | 3/4+b=5/6 | | 16b/72=72/16b | | y/6+y/2=9/8 | | 3y-15/4=7 | | 2(3x+4=50 | | -4(y-2)=-8y-4 | | 0-3x+37=37 | | -5y+3{y-8}=-32 | | Y^3+7y^2-18y=0 | | 3(2x×3)-7(x+2)=0 | | 4n^2+6n-58=12 | | 3u-30=-3(u-6) | | 4x+6=-102-7x | | 6=1-2n=+5 | | 8y+1=6y+8 |